INNOVATIVE TECHNOLOGY LTD

Protocol Manual

SMART HOPPER, SMART SYSTEM

ion GA138_2_2_223A

Contents

Descriptions

Introduction

General Description
Hardware layer

Transport Layer

Encryption Layer

Encryption Keys

Generic Commands and Responses
Protocol Versions

SMART Hopper

Smart System
Command/Event Tables
SMART HOPPER Command Table
SMART HOPPER Event Table
SMART SYSTEM Command Table
SMART SYSTEM Event Table
Commands

Sync

Reset

Host Protocol Version

Poll

Get Serial Number

Disable

Enable

Get Firmware Version

Get Dataset Version

Set Inhibits

Setup Request

Poll With Ack

Event Ack

Set Denomination Route
Get Denomination Route
Payout Amount

Get Denomination Level

Set Denomination Level
Halt Payout

Float Amount

Get Min Payout

Set Coin Mech Inhibits
Payout By Denomination
Float By Denomination
Empty All

Set Options

Get Options

Coin Mech Global Inhibit
Smart Empty

Cashbox Payout Operation Data
Get All Levels

Get Counters

Reset Counters

Set Generator

Set Modulus

Request Key Exchange

Coin Mech Options

Get Build Revision

Comms Pass Through

Set Baud Rate

Ssp Set Encryption Key

Ssp Encryption Reset To Default
Get Real Time Clock Configuration
Set Real Time Clock

Get Real Time Clock

Set Cashbox Payout Limit
Coin Stir

Payout Amount By Denomination
Events

Slave Reset

Disabled

Fraud Attempt

Initialising

Dispensing

Dispensed

Coins Low

Hopper Jammed

Halted

Floating

Floated

Timeout

Incomplete Payout
Incomplete Float

Cashbox Paid

Coin Credit

Coin Mech Jammed

Coin Mech Return Active
Emptying

Emptied

Smart Emptying

Smart Emptied

Calibration Failed

Device Full

Coin Mech Error

Attached Coin Mech Disabled
Attached Coin Mech Enabled
Value Added

Pay-in Active

<< back to index

Introduction

This manual describes the operation of the Smiley ® Secure Protocol SSP.

ITL recommend that you study this manual as there are many new features permitting new uses and more
secure applications.

If you do not understand any part of this manual please contact the ITL for assistance. In this way we may
continue to improve our product.

Alternatively visit our web site at_www.innovative-technology.co.uk

Enhancements of SSP can be requested by contacting:
support@innovative-technology.co.uk

MAIN HEADQUARTERS
Innovative Technology Ltd
Derker Street, Oldham, England. OL1 4EQ

Tel: +44 161 626 9999 Fax: +44 161 620 2090
E-mail: support@innovative-technology.co.uk

Web site: www.innovative-technology.co.uk

Smiley ® and the ITL Logo are international registered trademarks and they are the property of
Innovative Technology Limited.

Innovative Technology has a number of European and International Patents and Patents Pending protecting
this product. If you require further details please contact ITL ®.

Innovative Technology is not responsible for any loss, harm, or damage caused by the installation
and use of this product.

This does not affect your local statutory rights.

If in doubt please contact innovative technology for details of any changes.

http://intranet2/
http://intranet2/
http://intranet2/
http://intranet2/

<< back to index

General Description

Smiley ® Secure Protocol (SSP) is a secure interface specifically designed by ITL ® to address the problems
experienced by cash handling systems in gaming machines.Problems such as acceptor swapping,
reprogramming acceptors and line tapping areall addressed.

The interface uses a master-slave model, the host machine is the master and the peripherals (note acceptor,
coin acceptor or coin hopper) are the slaves.

Data transfer is over a multi-drop bus using clock asynchronous serial transmissionwith simple open collector
drivers. The integrity of data transfers is ensured through the use of 16 bit CRC checksums on all packets.

Each SSP device of a particular type has a unique serial number; this number is used to validate each device
in the direction of credit transfer before transactions can takeplace. It is recommended that the encryption
system be used to prevent fraud through busmonitoring and tapping. This is compulsory for all payout
devices.

Commands are currently provided for coin acceptors, note acceptors and coinhoppers. All current features of
these devices are supported.

FEATURES:

e Serial control of Note / Coin Validators and Hoppers
e 4 wire (Tx, Rx, +V, Gnd) system

e Open collector driver, similar to RS232

e High Speed 9600 Baud Rate

e 16 bit CRC error checking

e Data Transfer Mode

e Encryption key negotiation

e 128 Bit AES Encrypted Mode

BENEFITS:

e Proven in the field

e Simple and low cost interfacing of transaction peripherals.
e High security control of payout peripherals.

» Defence against surrogate validator fraud.

e Straightforward integration into host machines.

e Remote programming of transaction peripherals

e Open standard for universal use.

To help in the software implementation of the SSP, ITL can provide, C/C++ Code, C#.Net Code, DLL controls
available on request. Please contact: support@innovative-technology.co.uk

mailto:support@innovative-technology.co.uk

<< back to index

Hardware layer

Communication is by character transmission based on standard 8-bit asynchronous data transfer.

Only four wires are required TxD, RxD, +V and ground. The transmit line of the host is open collector, the
receive line of each peripheral has a 10Kohm pull-up to 5 volts.The transmit output of each slave is open
collector, the receive input of the host has asingle 3k3 ohm pull-up to 5 volts.

The data format is as follows:

Encoding NRZz
Baud Rate 9600
Duplex Full
Start bits 1
Data Bits 8
Parity none
Stop bits 2

Caution: Power to peripheral devices would normally be via the serial bus. However devices that
require a high current supply in excess of 1.5 Amps, e.g. hoppers, would be expected to be
supplied via a separate connector.

<< back to index

Transport Layer

Data and commands are transported between the host and the slave(s) using a packet format as shown
below:

STX SEQ/SLAVE ID LENGTH | DATA | CRCL CRCH

STX Single byte indicating the start of a message - 0x7F hex

SEQ/ Bit 7 is the sequence flag of the packet, bits 6-0 represent the address of the slave the

ISI;ave packet is intended for, the highest allowable slave ID is 0x7D

The length of the data included in the packet - this does not include STX, the CRC or the
slave ID

DATA [Commands and data to be transferred

Low and high byte of a forward CRC-16 algorithm using the Polynomial (X16 + X15 + X2
CRCL, |+1) calculated on all bytes, except STX. It is initialised using the seed OxFFFF. The CRC
CRCH |is

calculated before byte stuffing.

LENGTH

PACKET SEQUENCING

Byte stuffing is used to encode any STX bytes that are included in the data to be transmitted. If Ox7F (STX)
appears in the data to be transmitted then it should be replaced by 0x7F, Ox7F.

Byte stuffing is done after the CRC is calculated, the CRC its self can be byte stuffed. The maximum length of
data is OxFF bytes.

The sequence flag is used to allow the slave to determine whether a packet is a re-transmission due to its last
reply being lost. Each time the master sends a new packet to a slave it alternates the sequence flag. If a slave
receives a packet with the same sequence flag as the last one, it does not execute the command but simply
repeats it's last reply. In a reply packet the address and sequence flag match the command

packet.

This ensures that no other slaves interpret the reply as a command and informs the master that the correct
slave replied. After the master has sent a command to one of the slaves, it will wait for 1 second fora reply.
After that, it will assume the slave did not receive the command intact so it will re-transmit it with the same
sequence flag. The host should also record the fact that a gap in transmission has occurred and prepare to
poll the slave for its serial number identity following the current message. In this way, the replacement of the
hosts validator by a fraudulent unit can be detected.

The frequency of polling should be selected to minimise the possibility of swapping a validator between polls.
If the slave has not received the original transmission, it will see the re-transmission as a new command so it
will execute it and reply. If the slave had seen the original command but its reply had been corrupted then
the slave will ignore the command but repeat its reply. After twenty retries, the master will assume that the
slave has crashed. A slave has no time-out or retry limit. If it receives a lone sync byte part way through
receiving a packet it will discard the packet received so far and treat the next byte as an address byte.

<< back to index

Encryption Layer

PACKET FORMAT

Encryption is mandatory for all payout devices and optional for pay in devices. Encrypted data and commands
are transported between the host and the slave(s) using the transport mechanism described above, the
encrypted information is stored in the data field in the format shown below:

STX SEQ/SLAVE ID LENGTH DATA CRCL CRCH

DATA

STEX Encrypted Data

Encrypted Data

| eLENGTH | eCOUNT | eDATA | ePACKING | ecRCL | ecRcH |

STEX Single byte indicating the start of an encrypted data block - 0x7E

The length of the data included in the packet - this does not include STEX, COUNT,
eLENGTH the

packing or the CRC

A four byte unsigned integer. This is a sequence count of encrypted packets, it is
incremented each time a packet is encrypted and sent, and each time an encrypted

eCOUNT
packet
is received and decrypted.
eDATA Commands or data to be transferred

Random data to make the length of the length +count + data + packing + CRCL +
ePACKING CRCH

to be a multiple of 16 bytes

Low and high byte of a forward CRC-16 algorithm using the polynomial (X16 + X15
eCRCL/eCRCH|+ X2

+1) calculated on all bytes except STEX. It is initialised using the seed OxFFFF

After power up and reset the slave will stay disabled and will respond to all commands with the generic
response KEY_NOT_SET (0xFA), without executing the command, until the key has been negotiated. There
are two classes of command and response, general commands and commands involved in credit transfer.

General commands may be sent with or without using the encryption layer. The slave will reply using the
same method, unless the response contains credit information, in this case the reply will always be encrypted.
Credit

transfer commands, a hopper payout for example, will only be accepted by the slave if received encrypted.
Commands that must be encrypted on an encryption-enabled product are indicated on the command
descriptions for each command. The STEX byte is used to determine the packet type. Ideally all
communications will be encrypted.

After the data has been decrypted the CRC algorithm is performed on all bytes including the CRC. The result
of this calculation will be zero if the data has been decrypted with the correct key. If the result of this
calculation is non-zero then the peripheral should assume that the host did not encrypt the data (transmission
errors are detected by the transport layer). The slave should go out of service until it is

reset.

The packets are sequenced using the sequence count; this is reset to 0 after a power cycle and each time the
encryption keys are successfully negotiated. The count is incremented by the host and slave each time they
successfully encrypt and transmit a

packet. After a packet is successfully decrypted the COUNT in the packet should be compared with the
internal COUNT, if they do not match then the packet is discarded.

<< back to index

Encryption Keys

The encryption key length is 128 bits. However this is divided into two parts. The lower 64 bits are fixed and
specified by the machine manufacturer, this allows the manufacturer control which devices are used in their
machines.

The higher 64 bits are securely negotiated by the slave and host at power up, this ensures each machine and
each session are using different keys. The key is negotiated by the Diffie-Hellman key exchange method.
See: en.wikipedia.org/wiki/Diffie-Hellman

The exchange method is summarised in the table below. C code for the exchange algorithm is available from
ITL.

Step Host Slave
1 Generate prime number GENERATOR
Use command Set Generator to send to))
2 slave Check GENERATOR is prime and store |- cck CENERATOR is prime and store
3 Generate prime number MODULUS
Use command Set Modulus to send to slave : -
4 heck MODUL t
Check MODULUS is prime and store Sz Shtisie Sl LRl
5 Generate Random Number HOST_RND
6 Calculate HostInterKey: = GENERATOR
A HOST_RND mod MODULUS
7 Use command Request Key Exchangeto |- o ote Random Number SLAVE_RND
send to slave.
8 Calculate SlavelnterKey: = GENERATOR ~
SLAVE_RND mod MODULUS
9 Send to host as reply to Request Key
Exchange
.= A
10 Calculate Key: = SlavelnterKey ~ gi;:\u/:;t;;l(gyr;deostInterKey
HOST_RND mod MODULUS MODUL—US

Note: ™ represents to the power of

http://en.wikipedia.org/wiki/Diffie-Hellman

<< back to index

Generic Commands and Responses

All devices must respond to a list of so-called Generic Commands as show in the table below.

Command Code
Reset 0x01

Host Protocol Version 0x06
Get Serial Number 0x0C
Sync Ox11

Disable 0x09
Enable 0x0A

Get Firmware Version 0x20
Get Dataset Version 0x21

A device will respond to all commands with the first data byte as one of the Generic responses list below..

Generic Response Code Description
Returned when a command from the host is understood
OK 0xFO and

has been, or is in the process of, being executed.
Returned when an invalid command is received by a

COMMAND NOT KNOWN OxF2 R
peripheral.
A command was received by a peripheral, but an
WRONG No PARAMETERS OxF3 incorrect
number of parameters were received.
PARAMETERS OxF4 One of the parameters sent with a command is out of
range.
A command sent could not be processed at that time.
COMMAND CANNOT BE OXF5 E.g.

PROCESSED sending a dispense command before the last dispense

operation has completed.
Reported for errors in the execution of software e.g.
Divide
by zero. This may also be reported if there is a problem

SOFTWARE ERROR OxF6 resulting from a failed remote firmware upgrade, in this
case
the firmware upgrade should be redone.
FAIL O0xF8 Command failure

The slave is in encrypted communication mode but the

KEY NOT SET FA
ors Ox encryption keys have not been negotiated.

<< back to index

Protocol Versions

An SSP Poll command returns a list of events and data that have occurred in the device since the last poll.
The host machine then reads this event list taking note of the data length (if any) of each event.

On order to introduce new events, SSP uses a system of Protocol Version levels to identify the event types
and sizes a machine can expect to see in reponse to a poll. If this were not done, new unknown events with
unknown datasize to a machine not set-up for these would cause the event reading to fail.

A host system should take note of the protocol version of the device connected and ensure that it is not set
for a higer version that the one it is expecting to use.

The host can also check that the device can also be set to the higher protocol level, enusring that expected
events will be seen.

The listed events in this manual show the protocol version level of each event.

As part of the start-up procedure, the host should read the current protocol level of the device (using the set-
up request command).

<< back to index

SMART Hopper

SMART Hopper is a coin payout device capable of discriminating and paying out multi-denominations of
stored coins from its internal storage hopper.

Coins added to the hopper can be designated to be routed to an external cashbox on detection or recycled and
stored in the hopper unit to be available for a requested payout.

SMART Hopper also supports the addition of a connected cctalk™ or eSSP™ coin mechanism which will
automatically add its validated coins to the SMART Hopper system levels.

Note that payout values are in terms of the of the penny value of that currency. So for 5.00, the value sent
and returned by the hopper would be 500. All transactions with a SMART hopper must be encrypted to
prevent dispense commands being recorded and replayed by an external device.

Addressing
The SMART Hopper has a default SSP Address of 16 dec 0x10 hex.
The setup request reponse table for coin hopper types:

Protocol version less than 6:

size
D ff
ata byte offset e notes
Unit type 0 1 3 = SMART Hopper
Flrmvyare 1 4 ASCII data of device firmware version (e.g. '0110' = 1.10)
version
Country code 5 3 ASCII code of the device dataset (e.g. 'EUR'")
Protqcol 8 1 The current protocol version set for this device
Version
Number of 9 1 The number of coin denominations in this device dataset.
coin values [n]
. 2 byte each value for the coin denominations (e.g. 0.05
*
Coin values 10 n*?2 coin = 0x05,0x00)

Protocol version greater or equal to 6:

Data byte offset (bS;::s) notes
Unit type 0 1 3 = SMART Hopper
F|rmvyare 1 4 ASCII data of device firmware version (e.g. '0110' = 1.10)
version
Country code 5 3 ASCII code of the device dataset (e.g. 'EUR')
Protqcol 8 1 The current protocol version set for this device
Version
Ngmber of 9 1 The number of coin denominations in this device dataset. [n]
coin values
. 2 byte each value for the coin denominations (e.g. 0.05 coin
*
Coin values 10 n*2 = 0x05,0x00)
An obsolete value showing security level. This is set to 2 if
+ B3
Country codes 10 + (n * 2) the value multiplier is > 0 otherwise 0.

<< back to index

Smart System

The Smart System device is a multi-coin pay-in, pay-out system with detachable fast coin pay-in feeder.

Coins fed into the pay-in head will be validated and counted and recognised coins are routed to the attached
hopper while rejected coins are fed out of the front of the system.

Coin hopper levels are adjusted internally.

The system can function as a stand-alone hopper payout system if the pay-in feeder head is removed.
The SMART Systemhas a default SSP Address of 16 dec 0x10 hex

The setup request reponse table for coin hopper types:

Protocol version less than 6:

size
Data byte offset notes
4 (bytes)
Unit type 0 1 3 = SMART Hopper
Flrmware 1 4 ASCII data of device firmware version (e.g. '0110' = 1.10)
version
Country code 5 3 ASCII code of the device dataset (e.g. 'EUR")
Pmt?co' 8 1 The current protocol version set for this device
Version
Number of 9 1 The number of coin denominations in this device dataset.
coin values [n]
Coin values 10 —_— 2 byte each value for. the coin denominations (e.g. 0.05
coin = 0x05,0x00)

Protocol version greater or equal to 6:

size
D ff
ata byte offset (vics) notes
Unit type 0 1 3 = SMART Hopper
Flrmvyare 1 4 ASCII data of device firmware version (e.g. '0110' = 1.10)
version
Country code 5 3 ASCII code of the device dataset (e.g. 'EUR')
Protqcol 8 1 The current protocol version set for this device
Version
NL.meer of 9 1 | The number of coin denominations in this device dataset. [n]
coin values
Coin values 10 n* 2 2 byte each value for the coin denominations (e.g. 0.05 coin
= 0x05,0x00)
An obsolete value showing security level. This is set to 2 if
Count des| 10 + (n * 2
ountry coces (n) the value multiplier is > 0 otherwise 0.

<< back to index

SMART HOPPER Command Table

Sync

Reset

Host Protocol Version
Poll

Get Serial Number
Disable

Enable

Get Firmware Version
Get Dataset Version
Setup Request

Poll With Ack

Event Ack

Set Denomination Route
Get Denomination Route
Payout Amount

Get Denomination Level
Set Denomination Level
Halt Payout

Float Amount

Get Min Payout

Set Coin Mech Inhibits
Payout By Denomination
Float By Denomination
Empty All

Set Options

Get Options

Coin Mech Global Inhibit
Smart Empty

Cashbox Payout Operation Data
Get All Levels

Set Generator

Set Modulus

Request Key Exchange
Coin Mech Options

Get Build Revision
Comms Pass Through
Set Baud Rate

Ssp Set Encryption Key
Ssp Encryption Reset To Default
Set Cashbox Payout Limit

Header code (hex)

Ox11
0x01
0x06
0x07
0x0C
0x09
0x0A
0x20
0x21
0x05
0x56
0x57
0x3B
0x3C
0x33
0x35
0x34
0x38
0x3D
0x3E
0x40
0x46
0x44
0x3F
0x50
0x51
0x49
0x52
0x53
0x22
0x4A
0x4B
0x4C
0x5A
0x4F
0x37
0x4D
0x60
0x61
Ox4E

12

10
32
33

86
87
59
60
51
53
52
56
61
62
64
70
68
63
80
81
73
82
83
34
74
75
76
90
79
55
77
96
97
78

SMART HOPPER Event Table

Slave Reset

Disabled

Fraud Attempt
Initialising

Dispensing

Coins Low

Hopper Jammed

Halted

Floating

Floated

Timeout

Incomplete Payout
Incomplete Float
Cashbox Paid

Coin Credit

Coin Mech Jammed
Coin Mech Return Active
Emptying

Emptied

Smart Emptying

Smart Emptied
Calibration Failed

Coin Mech Error
Attached Coin Mech Disabled
Attached Coin Mech Enabled

Header code (hex)

O0xF1

OxE8
OxE6
0xB6
0xDA
0xD3
0xD5
0xD6
0xD7
0xD8
0xD9
0xDC
0xDD
0xDE
O0xDF
0xC4
0xC5
0xC2
0xC3
0xB3
0xB4
0x83

0xB7
0xBD
0xBE

dec

241
232

182
218
211
213
214
215

217
220

222
223

197
194

179
180
131
183
189
190

<< back to index

SMART SYSTEM Command Table

Sync

Reset

Host Protocol Version

Poll

Get Serial Number
Disable

Enable

Get Firmware Version
Get Dataset Version

Set Inhibits

Setup Request

Poll With Ack

Event Ack

Set Denomination Route
Get Denomination Route
Payout Amount

Get Denomination Level
Set Denomination Level
Halt Payout

Float Amount

Get Min Payout

Set Coin Mech Inhibits
Payout By Denomination
Float By Denomination
Empty All

Set Options

Get Options

Coin Mech Global Inhibit
Smart Empty

Cashbox Payout Operation Data
Get All Levels

Get Counters

Reset Counters

Set Generator

Set Modulus

Request Key Exchange
Coin Mech Options

Get Build Revision
Comms Pass Through
Set Baud Rate

Ssp Set Encryption Key
Ssp Encryption Reset To Default
Get Real Time Clock Configuration
Set Real Time Clock

Get Real Time Clock

Set Cashbox Payout Limit
Coin Stir

Payout Amount By Denomination

Header code (hex)

0x11
0x01
0x06
0x07
0x0C
0x09
0x0A
0x20
0x21
0x02
0x05
0x56
0x57
0x3B
0x3C
0x33
0x35
0x34
0x38
0x3D
Ox3E
0x40
0x46
0x44
0x3F
0x50
0x51
0x49
0x52
0x53
0x22
0x58
0x59
0x4A
0x4B
0x4C
O0x5A
0x4F
0x37
0x4D
0x60
0x61
0x62
0x64
0x63
0x4E
0x5D
0x39

12

10
32
33

86
87
59
60
51
53
52
56
61
62
64
70
68
63
80
81
73
82
83
34
88
89
74
75
76
90
79
55
77
96
97
98
100
99
78
93
57

SMART SYSTEM Event Table

Header code (hex) dec

Slave Reset OxF1 241
Disabled OxE8 232
Fraud Attempt O0xE6 230
Initialising 0xB6 182
Dispensing 0xDA 218
Dispensed 0xD2 210
Hopper Jammed 0xD5 213
Halted 0xD6 214
Floating 0xD7 215
Floated 0xD8 216
Timeout 0xD9 217
Incomplete Payout 0xDC 220
Incomplete Float 0xDD 221
Cashbox Paid 0xDE 222
Coin Mech Jammed 0xC4 196
Coin Mech Return Active 0xC5 197
Emptying 0xC2 194
Emptied 0xC3 195
Smart Emptying 0xB3 179
Smart Emptied 0xB4 180
Calibration Failed 0x83 131
Device Full 0xCF 207
Coin Mech Error 0xB7 183
Attached Coin Mech Disabled 0xBD 189
Attached Coin Mech Enabled O0xBE 190
Value Added O0xBF 191

Pay-in Active 0xC1 193

<< back to index

Command Code hex

Code decimal

Sync Ox11

17

Implemented on

Encryption Required

SMART HOPPER, SMART SYSTEM

optional

Description

SSP uses a system of sequence bits to ensure that packets have been received by the slave
and the reply received by the host. If the slave receives the same sequence bit as the

previous command packet then this is signal to re-transmit the last reply.

A mechanism is required to initially set the host and slave to the same sequence bits and

this is done by the use of the SYNC command.

A Sync command resets the seq bit of the packet so that the slave device expects the next

seq bit to be 0. The host then sets its next seq bit to 0 and the seq sequence is

synchronised.

The SYNC command should be the first command sent to the slave during a session.

Packet examples

Set seq bitto 1

Host transmit: 7F 80 01 11 65 82
Slave Reply: 7F 80 01 FO 23 80

<< back to index

Command Code hex Code decimal
Reset 0x01 1
Implemented on Encryption Required
SMART HOPPER, SMART SYSTEM optional
Description

Performs a software and hardware reset of the device.

After this command has been acknowledged with OK (0xFO0), any encryption, baud rate
changes, etc will be reset to default settings.

Packet examples

No data parameters, sequence bit set and address 0

Host transmit: 7F 80 01 01 06 02
Slave Reply: 7F 80 01 FO 23 80

<< back to index

Command Code hex Code decimal
Host Protocol Version 0x06 6
Implemented on Encryption Required
SMART HOPPER, SMART SYSTEM optional
Description

ITL SSP devices use a system of protocol levels to control the event responses to polls to
ensure that changes would not affect systems with finite state machines unable to test for
new events with non-defined data lengths.

Use this command to allow the host to set which protocol version to operate the slave
device.

If the device supports the requested protocol OK (0xFQ) will be returned. If not then FAIL
(OxF8) will be returned

Packet examples

The slave supports the protocol version 8

Host transmit: 7F 80 02 06 08 03 94
Slave Reply: 7F 80 01 FO 23 80

Host protocol version 9 not supported

Host transmit: 7F 80 02 06 09 06 14
Slave Reply: 7F 80 01 F8 10 00

<< back to index

Command

Code hex

Code decimal

Poll

0x07

7

Implemented on

Encryption Required

SMART HOPPER, SMART SYSTEM

optional

Description

This command returns a list of events occured in the device since the last poll was sent.

The SSP devices share some common events and have some unique events of their own.
See event tables for details for a specific device.

Packet examples

Poll command returning device reset and disabled response

Host transmit: 7F 80 01 07 12 02

Slave Reply: 7F 80 03 FO F1 F8 DC OC

Event response note credit channel 1 and note stacked

Host transmit: 7F 80 01 07 12 02

Slave Reply: 7F 80 04 FO EE 01 EB B9 48

<< back to index

Command

Code hex

Code decimal

Get Serial Number

0x0C

12

Implemented on

Encryption Required

SMART HOPPER, SMART SYSTEM

optional

Description

This command returns a 4-byte big endian array representing the unique factory
programmed serial number of the device.

Packet examples

The device responds with 4 bytes of serial number data. In this case, the serial number is
01873452 = 0x1c962c. The return array is formatted as big endian (MSB first).

Host transmit: 7F 80 01 OC 2B 82

Slave Reply: 7F 80 05 FO 00 1C 96 2C D4 97

<< back to index

Command Code hex Code decimal
Disable 0x09 9
Implemented on Encryption Required
SMART HOPPER, SMART SYSTEM optional
Description

Disabled the slave device from operation.

For example, this command would block a banknote validator from allowing any more
banknotes to be entered.

For most SSP devices, the default state is to be disabled after reset.

Packet examples

Single byte command with no parameters

Host transmit: 7F 80 01 09 35 82
Slave Reply: 7F 80 01 FO 23 80

NV11 when note float is jammed/disconnected responds COMMAND_CANNOT_BE_PROCESSED

Host transmit: 7F 80 01 09 35 82
Slave Reply: 7F 80 01 F5 3D 80

<< back to index

Command Code hex Code decimal
Enable Ox0A 10
Implemented on Encryption Required
SMART HOPPER, SMART SYSTEM optional
Description

This command will enable the SSP device for normal operation. For example, it will allow a
banknote validator to commence validating banknotes entered into it's bezel.

Packet examples

Single byte command with no parameters

Host transmit: 7F 80 01 OA 3F 82
Slave Reply: 7F 80 01 FO 23 80

NV11 when note float is jammed/disconnected responds COMMAND_CANNOT_BE_PROCESSED

Host transmit: 7F 80 01 OA 3F 82
Slave Reply: 7F 80 01 F5 3D 80

<< back to index

Command

Code hex

Code decimal

Get Firmware Version

0x20

32

Implemented on

Encryption Required

SMART HOPPER, SMART SYSTEM

optional

Description

Returns a variable length ASCII array containg the full firmware version of the attached

device.

Packet examples

In this example, the firmware version of the device is: NV02004141498000

Host transmit: 7F 80 01 20 CO 02

Slave Reply: 7F 80 11 FO 4E 56 30 32 30 30 34 31 34 31 34 39 38 30 30 30 DE 55
ascii: . NV 0 2 0 0 4 1 4 1 4 9 8 0 0 0

<< back to index

Command

Code hex

Code decimal

Get Dataset Version

0x21

33

Implemented on

Encryption Required

SMART HOPPER, SMART SYSTEM

optional

Description

Returns a varibale length ASCII array giving the installed dataset version of the device.

Packet examples

This example shows a device with dataset version EUR01610.

Host transmit: 7F 80 01 21 C5 82

Slave Reply: 7F 80 09 FO 45 55 52 30 31 36 31 30 B8 2A

ascii: . E U R O

1 6 1 0

<< back to index

Command Code hex Code decimal
Set Inhibits 0x02 2
Implemented on Encryption Required
SMART SYSTEM optional
Description

Sets the channel inhibit level for the device. each byte sent represents 8 bits (channels of
inhibit).

Nv200 has the option to send 2,3,0r 4 bytes to represent 16,24, or 64 channels, the other
BNV devices have the option of sending 1 or 2 bytes for 8 or 16 channel operation.

Set the bit low to inhibit all note acceptance on that channel, high to allow note acceptance.

Packet examples

Set channels 1-3 enabled, 4-16 inhibited

Host transmit: 7F 80 03 02 07 00 2B B6
Slave Reply: 7F 80 01 FO 23 80

All channels enabled

Host transmit: 7F 80 03 02 FF FF 25 A4
Slave Reply: 7F 80 01 FO 23 80

<< back to index

Command Code hex Code decimal
Setup Request 0x05 5
Implemented on Encryption Required
SMART HOPPER, SMART SYSTEM optional
Description

Request the set-up configuration of the device. Gives details about versions, channel
assignments, country codes and values.

Each device type has a different return data format. Please refer to the table information for
each individual device.

SMART Ticket/Coupon Printer Response

Smart Ticket Data Response Size Notes
Offset
Unit Type 0 1 0x08 = SMART Tlclket, 0x0B = Coupon
Printer
Firmware Version 1 4 Ascii data of device firmware (eg 0123)
Cutter Enabled 5 1 (0 for disabled)
Tab enabled status 6 1 (0 for disabled)
Reverse validation .
enabled status 7 1 (0 for disabled)
Font pack code (ASCII) 8 3 e.g. FP1
Printer Type: 0x0 for Fan Fold, Ox1 Paper
Printer type 11 1 Roll (Cutter
fitted)
SD card fitted status 12 1 (1 for detected)
Printer darkr?ess/quallty 13 1 value between 0 - 3
setting
SSP Protocol Version 14 1

Packet examples

This example shows the data returned for a BNV with GBP dataset, firmware version 1.00, 3
channels GBP 5, GBP 10, GBP 20

Host transmit: 7F 80 01 05 1D 82
Slave Reply: 7F 80 17 FO 00 30 31 30 30 47 42 50 00 00 01 03 05 OA 14 02 02 02 40 00
00 05 61 81
ascii: . .. 01 0O O0OGOBU?P @

<< back to index

Command Code hex Code decimal
Poll With Ack 0x56 86
Implemented on Encryption Required
SMART HOPPER, SMART SYSTEM £ yes
Description

A command that behaves in the same way as the Poll command but with this command, the
specified events will need to be acknowledged by the host using the EVENT ACK command
(0x56).

The events will repeat until the EVENT ACK command is sent and the BNV will not allow any
further note actions until the event has been cleared by the EVENT ACK command. If this
command is not supported by the slave device, then generic response 0xF2 will be returned
and standard poll command (0x07) will have to be used.

Packet examples

<< back to index

Command Code hex Code decimal
Event Ack 0x57 87
Implemented on Encryption Required
SMART HOPPER, SMART SYSTEM & yes
Description

This command will clear a repeating Poll ACK response and allow further note operations.

Packet examples

Host transmit: 7F 80 01 57 F2 03
Slave Reply: 7F 80 01 FO 23 80

<< back to index

Command

Code hex

Code decimal

Set Denomination Route

0x3B

59

Implemented on

Encryption Required

SMART HOPPER, SMART SYSTEM

A
X yes

Description

This command will configure the denomination to be either routed to the cashbox on

detection or stored to be made available for later possible payout.

Note on protocol versions: For protocol versions less than 6 a value only data array
is sent. For protocol version greater or equal to 6, a 3 byte country code is also
sent to allow mulit-currency functionality to the payout.

Please note that there exists a difference in the data format between SMART

Payout and SMART Hopper for protocol versions less than 6. In these protocol
versions the value was determined by a 2 byte array rather than 4 byte array for

SMART Hopper.

For NV11 devices the host must send the required note value in the same form that the

device is set to report by (see Set Value Reporting Type command).

Protocol version less than 6 command format:

byte

function

size

0 requested route (0 = payout, 1= cashbox) 1

1 value (2 bytes for hopper, 4 bytes for others) |2 or 4

Protocol version greater of equal to 6 format:

byte function size
0 requested route (0 = payout, 1= cashbox) 1
1 value of requested denomination to route (4 byte 4
integer)
5 ASCII country code of requested denomination 3

With note payouts, the device responds with COMMAND CANNOT BE PROCESSED and an

error byte for request failure:

Error code

No payout connected 1
Invalid currency detected 2
Payout device failure 3

Packet examples

An example of a request to route a 10c EUR coin to be stored for payout using protocol version
6

Host transmit: 7F 80 09 3B 00 OA 00 00 00 45 55 52 08 43
Slave Reply: 7F 80 01 FO 23 80

Example command with error response Invalid currency detected

Host transmit: 7F 80 09 3B 00 OA 00 00 00 45 55 52 08 43
Slave Reply: 7F 80 02 F5 02 30 3E

<< back to index

Command

Code hex

Code decimal

Get Denomination Route

0x3C

60

Implemented on

Encryption Required

SMART HOPPER, SMART SYSTEM

A
K yes

Description

This command allows the host to determine the route of a denomination.

Note protocol versions:

For protocol versions less than 6 a value only data array is sent. For protocol version greater
or equal to 6, a 3 byte country code is also sent to allow multi-currency functionality to the

payout.

Please note that there exists a difference in the data format between SMART

Payout and SMART

Hopper for protocol versions less than 6. In these protocol versions the value was

determined by a 2 byte array rather than 4 byte array

For NV11 devices the host must send the required note value in the same form that the

device is set to report by (see Set Value Reporting Type command).

Protocol version less than 6 command format:

byte

function

size

0 value (2 bytes for hopper, 4 bytes for others) |2 or 4

Protocol version greater of equal to 6 format:

byte function size
0 value of requested denomination to route (4 byte 4
integer)
4 ASCII country code of requested denomination .

The device responds with a data byte representing the current route of the denomination.

byte

function

size

Generic OK

1 |Route (0 = recycle for payout,1 = system cashbox)| 1

With note payouts, the device responds with COMMAND CANNOT BE PROCESSED and an

error byte for request failure:

Error code

No payout connected 1
Invalid currency detected 2
3

Payout device failure

Packet examples

This example shows a request to obtain the route of EUR 5.00 note in protocol version 6.
Returns 0 for payout.

Host transmit: 7F 80 08 3C F4 01 00 00 45 55 52 2F OE
Slave Reply: 7F 80 02 FO 00 3F A0

<< back to index

Command Code hex Code decimal
Payout Amount 0x33 51
Implemented on Encryption Required
SMART HOPPER, SMART SYSTEM & yes
Description

A command to set the monetary value to be paid by the payout unit.

This command was expanded after and including protocol version 6 to include
country codes and payout test option.

Command format protocol version less than 6:

byte function size
0 payout value (4 byte integer of the full penny 4
amount)
Command format protocol greater than or equal to 6:
byte function size
0 payout value (4 byte integer of the full penny 4
amount)
4 ASCII country code of currency to pay 3
8 Option byte (TEST_PAYOUT_AMOUT 0x19, 1

PAYOUT_AMOUNT 0x58),

For request failure, the device responds with COMMAND CANNOT BE PROCESSED and a data
byte showing the

error code.
Error Code
Not enough value in device 1
Cannot pay exact amount 2
Device busy 3
Device disabled 4

Packet examples

Shows a request to payout EUR 5.00 using protocol version 4

Host transmit: 7F 80 05 33 F4 01 00 00 32 50
Slave Reply: 7F 80 01 FO 23 80

Shows an example is a request to payout EUR 5.00 in protocol version 6 with commit option.

Host transmit: 7F 80 09 33 F4 01 00 00 45 55 52 58 C3 EE
Slave Reply: 7F 80 01 FO 23 80

Shows an example is a request to payout EUR 5.00 in protocol version 6 failed due to cannot
pay exact amount

Host transmit: 7F 80 09 33 F4 01 00 00 45 55 52 58 C3 EE
Slave Reply: 7F 80 02 F5 02 30 3E

<< back to index

Command Code hex Code decimal
Get Denomination Level 0x35 53
Implemented on Encryption Required
SMART HOPPER, SMART SYSTEM optional
Description

This command returns the level of a denomination stored in a payout device as a 2 byte
value.

This command was expanded in protocol version 6 to include country codes for multi-
currency functionality.

Protocol version 5 command format:

byte function size

0 4 byte value of denomination requested 4

Protocol version 6 and greater command format:

byte function size
0 4 byte value of denomination requested 4
4 ASCII country code of denomination required 3

Packet examples

Example shows a request to find the amount of 0.10c coins in protocol version 5. Returns a
level of 100

Host transmit: 7F 80 05 35 OA 00 00 00 1E 49
Slave Reply: 7F 80 03 FO 64 00 C5 FO

Shows a request to find the level of EUR 5.00 notes using protocol version 6. Returns 12.

Host transmit: 7F 80 08 35 F4 01 00 00 45 55 52 19 9E
Slave Reply: 7F 80 03 FO 0C 00 C3 80

If the denomination is not in the device, it will respond with COMMAND CANNOT BE
PROCESSED

Host transmit: 7F 80 08 35 F4 01 00 00 45 55 52 19 9E
Slave Reply: 7F 80 01 F5 3D 80

<< back to index

Command Code hex

Code decimal

Set Denomination Level 0x34

52

Implemented on

Encryption Required

SMART HOPPER, SMART SYSTEM

A
E yes

Description

A command to increment the level of coins of a denomination stored in the hopper. The
command is formatted with the command byte first, amount of coins to add as a 2-byte
little endian, the value of coin as 2-byte little endian and (if using protocol version 6) the
country code of the coin as 3 byte ASCII. The level of coins for a denomination can be set to

zero by sending a zero level for that value.

This command was updated when using version 6 and greater to allow for larger 4

byte coin values and country codes.

Protocol version less than 6:

byte

function

size

number of coins to add to level (0 will clear the
level)

value fo denimonation to set

Protocol version great or equal to 6:

byte

function

size

number of coins to add to level (0 will clear the
level)

value of denomination to set

ASCII country code of denomination

Packet examples

Example to increase the level of .50c coin by 20 using protocol version 5

Host transmit: 7F 80 05 34 14 00 32 00 63 FD
Slave Reply: 7F 80 01 FO 23 80

Example to increase the level of EUR 1.00 coins by 12 on a device set with protocol version 6

Host transmit: 7F 80 OA 34 0C 00 64 00 00 00 45 55 52 C7 28
Slave Reply: 7F 80 01 FO 23 80

<< back to index

Command Code hex Code decimal
Halt Payout 0x38 56
Implemented on Encryption Required
SMART HOPPER, SMART SYSTEM & yes
Description

A command to stop the execution of an existing payout. The device will stop payout at the
earliest convenient place and generate a Halted event giving the value paid up to that point.

Packet examples

Ok response for halt command accepted.

Host transmit: 7F 80 01 38 90 02
Slave Reply: 7F 80 01 FO 23 80

<< back to index

Command Code hex Code decimal
Float Amount 0x3D 61
Implemented on Encryption Required
SMART HOPPER, SMART SYSTEM & yes
Description

A command to float the payout unit to leave a requested value of money, with a requested
minimum possible payout level. All monies not required to meet float value are routed to
cashbox. Using protocol version 6, the host also sends a pre-test option byte
(TEST_FLOAT_AMOUT 0x19, FLOAT_AMOUNT 0x58), which will determine if the command
amount is tested or floated. This is useful for multi-payout systems so that the ability to pay
a split down amount can be tested before committing to actual float.

This command was expanded after and including protocol version 6 to include
country codes and payout test option.

Command format protocol version less than 6:

byte function size

0 value of minimum payout to remain 2

2 [float value (4 byte integer of the full penny amount)| 4

Command format protocol greater than or equal to 6:

byte function size
0 value of minimum payout to remain 2
2 payout value (4 byte integer of the full penny 4
amount)
6 ASCII country code of currency to pay 3
9 Option byte (TEST_FLOAT_AMOUT 0x19, 1
FLOAT_AMOUNT 0x58),

For request failure, the device responds with COMMAND CANNOT BE PROCESSED and a data
byte showing the
error code.

Device disabled

Error Code
Not enough value in device 1
Cannot pay exact amount 2
Device busy 3
4

Packet examples

Example to request to float to a value of 100.00 leaving a min possible payout of 0.50c for

protocol version 5

Host transmit: 7F 80 07 3D 32 00 10 27 00 00 1D 1C
Slave Reply: 7F 80 01 FO 23 80

In protocol version greater than 6, we add a 3 byte ascii country code and a test or commit
data byte. In this example a request to float to a value of EUR 100.00 leaving a min possible

payout of 0.50c

Host transmit: 7F 80 OB 3D 32 00 27 10 00 00 45 55 52 58 A7 DA

Slave Reply: 7F 80 01 FO 23 80

<< back to index

Command Code hex Code decimal
Get Min Payout Ox3E 62
Implemented on Encryption Required
SMART HOPPER, SMART SYSTEM optional
Description

A command to request the minimum possible payout amount that this device can provide.

For protocol versions less than 6, no parameters are sent.

For protocol version 6 or greater, we add the 3 byte country code of the country we are

requesting.

Packet examples

Example for protocol version 5 returning min payout of 200

Host transmit: 7F 80 01 3E 84 02

Slave Reply: 7F 80 05 FO C8 00 00 00 A7 C2

Protocol version 6 example returning a min payout value of 5.00 EUR

Host transmit: 7F 80 04 3E 45 55 52 14 E3
ascii: . . > E U R

Slave Reply: 7F 80 05 FO F4 01 00 00 BA 72

ascii:

<< back to index

Command Code hex Code decimal
Set Coin Mech Inhibits 0x40 64
Implemented on Encryption Required
A
SMART HOPPER, SMART SYSTEM K yes
Description

This command is used to enable or disable acceptance of individual coin values from a coin
acceptor connected to the hopper.

Protocol versions less than 6:

byte function size

0 Requested inhibit state (0 =inhibit,1=enable) 1

1 coin value (2 byte integer) 2

Protocol versions greater or equal to 6:.

byte function size

0 Requested inhibit state (0 =inhibit,1=enable) 1

1 coin value (2 byte integer)

3 ASCII country code of value 3

Packet examples

Example we want to enable acceptance of EUR 0.50c¢ coins in protocol version 6.

Host transmit: 7F 80 07 40 01 32 00 45 55 52 CA 5E
ascii: . . @ . 2 . E U R . ~»
Slave Reply: 7F 80 01 FO 23 80

<< back to index

Command Code hex Code decimal
Payout By Denomination 0x46 70
Implemented on Encryption Required
SMART HOPPER, SMART SYSTEM & yes
Description

A command to payout the requested quantity of individual denominations.

Requires Protocol Version 6 or above.
Attempting to use the command with an earlier protocol version will generate a
response 0xF4 (parameter out of range).

The quantities of denominations to pay are sent as a 2 byte little endian array; the money
values as 4-byte little endian array and the country code as a 3-byte ASCII array.

The host also adds an option byte to the end of the command array (TEST_PAYOUT_AMOUT
0x19 or PAYOUT_AMOUNT 0x58). This will allow a pre-test of the ability to payout
the requested levels before actual payout executes.

Command format:

byte function size
0 the number of individual requests in this command (max 20) 1
1 the number to pay 2
3 the denomination value 4
7 the denomination ASCII country code 3
10 repeat block for each required denomination
The option byte (TEST_FLOAT_AMOUT 0x19 or FLOAT_AMOUNT 0x58). 1

For request failure, the device responds with COMMAND CANNOT BE PROCESSED and a data
byte showing the
error code.

Device disabled

Error Code
Not enough value in device 1
Cannot pay exact amount 2
Device busy 3
4

Packet examples

Example - A hopper unit has stored 100 x 0.10 EUR, 50 x 0.20 EUR, 30 x 1.00 EUR, 10 x 1.00
GBP, 50 x 0.50 GBP and the host wishes to payout to 5 x 1.00 EUR, 5 x 0.10 EUR, 3 x 1.00

GBP and 2 x 0.50 GBP.

Host transmit: 7F 80 27 46 04 04 00 64 00 00 00 45 55 52 05 00 OA 00 00 00 45 55 52 03

00 64 00 00 00 47 42 50 02 00 32 00 00 00 47 42 50 58 94 B7

' F . . . d . . . E UR
d . . . GG B P . . 2
Slave Reply: 7F 80 01 FO 23 80

ascii:

<< back to index

Command Code hex Code decimal
Float By Denomination 0x44 68
Implemented on Encryption Required
A
SMART HOPPER, SMART SYSTEM Hyes
Description

A command to float (leave in device) the requested quantity of individual denominations.

Requires Protocol Version 6 or above.
Attempting to use the command with an earlier protocol version will generate a
response O0xF4 (parameter out of range).

The quantities of denominations to leave are sent as a 2 byte little endian array; the money
values as 4-byte little endian array and the country code as a 3-byte ASCII array. The host
also adds an option byte to the end of the command array (TEST_PAYOUT_AMOUT 0x19 or
PAYOUT_AMOUNT 0x58). This will allow a pre-test of the ability to float to the requested
levels before actual float executes.

Command format:

byte function size
0 the number of individual requests in this command (max 20) 1
1 the number required to leave in device (little endian array) 2
3 the denomination value (little endian array) 4
7 the denomination ASCII country code 3

10... repeat block for each required denomination

last| The option byte (TEST_FLOAT_AMOUT 0x19 or FLOAT_AMOUNT 0x58). 1

For request failure, the device responds with COMMAND CANNOT BE PROCESSED and a data
byte showing the
error code.

Error Code

Not enough value in device 1
Cannot pay exact amount 2
Device busy 3

Device disabled

Events used to indicate progress:

While floating is being carried out, the Floating and Floated events are used to keep the host
informed.

Packet examples

<< back to index

Command Code hex Code decimal
Empty All Ox3F 63
Implemented on Encryption Required
A
SMART HOPPER, SMART SYSTEM . yes
Description

This command will direct all stored monies to the cash box without reporting any value and
reset all the stored counters to zero. See Smart Empty command to record the value
emptied.

A poll command during this process will respond with Emptying and Empty events

Packet examples

Command format (no parameters) for acknowledged request.

Host transmit: 7F 80 01 3F 81 82
Slave Reply: 7F 80 01 FO 23 80

<< back to index

Command Code hex Code decimal
Set Options 0x50 80
Implemented on Encryption Required
A
SMART HOPPER, SMART SYSTEM Hyes
Description

The host can set the following options for the Smart Hopper. These options do not persist in
memory and after a reset they will This command is valid only when using protocol version
6 or greater.

Table below shows the available options for the SMART Hopper. The command data is
formatted as a 2 byte register REG_0 and REG_1

Reg_0 bits and their meaning

Bit| parameter
Split by highest value (0x00) The device will attempt to payout a requested
value by
starting from the highest to the lowest coins available. This mode will payout
the
minimum number of coins possible. Free pay (0x01) (Default state after reset).
0 pay mode The o e e
device will payout a coin as it passes its discriminator system if it fits into the
current
payout value and will leave enough of other coins to payout the rest of the
value. This
may give a faster payout but could result in a large number of coins of small
denominations paid out.
Disabled (0x00). The device will not refer to the level counters when
calculating if a
payout value can be made. Enabled (0x01) (Default state after reset). The
1 level check device will
check the level counters and accept or refuse a payout request based on levels
and/or
split of available levels.
Low speed (0x00). Payouts run at a lower motor speed. High Speed (Default
2 | motor speed state
after reset) (0x01). The motors run at max speed for payouts.
This bit is used in conjunction with Bit 0. If bit 3 is zero, then the Pay modes
cashbox pay . S o will b(.a as .
3 active described in bit 0. If Bit 3 is set the_n c0|_ns routed to the cashbox will be used
in coins
paid out of the front if they can fit into the current payout request.
Route 0 level | Set to 1 means that any coins detected with a level setting of 0 will be paid to
4 coins to the
cashbox cashbox, even if it is routed to the payout
. Set to 1 to enable a more efficient, smarter coin payout algorithm which will
High
5 tend to use coins which have higher level counts - thus speeding up the payout

efficiency split

process

Unknown to
payout

Set to 1 means any unknown coins will be paid out during Smart Empty
(otherwise they will be routed to cashbox)

Value added

set to O for coin added event set to 1 for value added event

REG_1: required but not used so bits set to 0.

Response

When responding to this command, the Smart Hopper returns a byte which indicates the
current operational mode as follows:

Set Options: Response Codes

Code Meaning

OxFC Highest split, use coins routed to cashbox in the split
OxFD Free pay, use coins routed to cashbox in the split
OxFE Highest split

OxFF Free pay

Packet examples

The example shows a request to turn off level check, run at high speed and split by highest
value.

Host transmit: 7F 80 03 50 04 00 40 38
Slave Reply: 7F 80 02 FO FE 38 22

<< back to index

Command Code hex Code decimal
Get Options 0x51 81
Implemented on Encryption Required
SMART HOPPER, SMART SYSTEM & yes
Description

This command returns 2 option register bytes described in Set Options command.

Packet examples

<< back to index

Command Code hex Code decimal
Coin Mech Global Inhibit 0x49 73
Implemented on Encryption Required
A
SMART HOPPER, SMART SYSTEM = yes
Description

This command allows the host to enable/disable the attached coin mech in one command
rather than by each individual value with previous firmware versions. Send this command

and one Mode data byte: Data byte =0x00 - mech disabled. Date byte = 0x01 - mech
enabled.

Packet examples

In this example we are sending a command to enable the coin mech.

Host transmit: 7F 80 02 49 01 33 36
Slave Reply: 7F 80 01 FO 23 80

<< back to index

Command Code hex Code decimal
Smart Empty 0x52 82
Implemented on Encryption Required
A
SMART HOPPER, SMART SYSTEM = yes
Description

Empties payout device of contents, maintaining a count of value emptied. The current total
value emptied is given is response to a poll command. All coin counters will be set to 0 after

running this command. Use Cashbox Payout Operation Data command to retrieve
a breakdown of the denominations routed to the cashbox through this operation.

Packet examples

Host transmit: 7F 80 01 52 EC 03
Slave Reply: 7F 80 01 FO 23 80

<< back to index

Command Code hex Code decimal
Cashbox Payout Operation Data 0x53 83
Implemented on Encryption Required
A
SMART HOPPER, SMART SYSTEM Hyes
Description

Can be sent at the end of a SMART Empty, float or dispense operation. Returns the amount
emptied to cashbox from the payout in the last dispense, float or empty command.

Response format:

byte function size
0 generic OK 1
1 number of denominations in report 2
3 gty of denomination 2
6 denomination value 4
10 denomination country (ASCII) 3
repeated above block for each denomination
gauntity of unknown 4

Packet examples

<< back to index

Command Code hex Code decimal
Get All Levels 0x22 34
Implemented on Encryption Required
SMART HOPPER, SMART SYSTEM optional
Description

Use this command to return all the stored levels of denominations in the device (including
those at zero level).
This gives a faster response than sending each individual denomination level request.

Response data consists of blocks of nine bytes data for each denimonation in the device:

byte function size
0 Generic OK 1
1 number of denominations in the device 1
2 level of denomination stored 2

4 denomination value (4 byte little endian integer) | 4

7 denomination code (3 Byte ASCII) 3

10.. Repeat for each denomination 9

Packet examples

In this example, we have a device coin dataset of EURO s with 20¢,50c,1 EUR and 2 EUR. It
currently has 100 x 20c, 65 x 50x, 0 x 1 EUR and 12 x 2 EUR.

Host transmit: 7F 80 01 22 CF 82
Slave Reply: 7F 80 26 FO 04 64 00 14 00 00 00 45 55 52 41 00 32 00 00 00 45 55 52 00
00 64 00 00 00 45 55 52 0C 00 C8 00 00 00 45 55 52 84 DO

<< back to index

Command Code hex Code decimal
Get Counters 0x58 88
Implemented on Encryption Required
SMART SYSTEM optional
Description

A command to return a global note activity counter set for the slave device. The response is
formatted as in the table below and the counter values are persistent in memory after a
power down- power up cycle.

These counters are note set independent and will wrap to zero and begin again if their
maximum value is reached. Each counter is made up of 4 bytes of data giving a max value
of 4294967295.

Response format:

byte function size
0 Generic OK 1
1 Number of counters in set 1
2 Stacked 4
6 Stored 4
10 Dispensed 4
14 Transferred to stack 4
18 Rejected 4

Packet examples

<< back to index

Command Code hex Code decimal
Reset Counters 0x59 89
Implemented on Encryption Required
SMART SYSTEM optional
Description

Resets the note activity counters described in Get Counters command to all zero values.

Packet examples

Command format (no parameters) for acknowledged request.

Host transmit: 7F 80 01 59 D5 83
Slave Reply: 7F 80 01 FO 23 80

<< back to index

Command Code hex Code decimal
Set Generator Ox4A 74
Implemented on Encryption Required
SMART HOPPER, SMART SYSTEM optional
Description

Part of the eSSP encryption negotiation sequence.

Eight data bytes are sent. This is a 64 bit number representing the Generator and must be a
prime number. The slave will reply with OK or PARAMETER_OUT_OF_RANGE if the number

is not prime.

Packet examples

In this example we are sending the prime number 982451653. This = 3A8F05C5 hex

Host transmit: 7F 80 09 4A C5 05 8F 3A 00 00 00 00 B2 73
Slave Reply: 7F 80 01 FO 23 80

<< back to index

Command Code hex Code decimal
Set Modulus 0x4B 75
Implemented on Encryption Required
SMART HOPPER, SMART SYSTEM optional
Description

Part of the eSSP encryption negotiation sequence.

Eight data bytes are sent. This is a 64 bit number representing the Moduls and must be a
prime number. The slave will reply with OK or PARAMETER_OUT_OF_RANGE if the humber

is not prime.

Packet examples

In this example we are sending the prime number 1287821. This = 13A68D hex

Host transmit: 7F 80 09 4B 8D A6 13 00 00 00 00 00 6C F6
Slave Reply: 7F 80 01 FO 23 80

<< back to index

Command

Code hex

Code decimal

Request Key Exchange

0x4C

76

Implemented on

Encryption Required

SMART HOPPER, SMART SYSTEM

optional

Description

The eight data bytes are a 64 bit number representing the Host intermediate key. If the
Generator and Modulus have been set the slave will calculate the reply with the generic
response and eight data bytes representing the slave intermediate key. The host and slave

will then calculate the key.

If Generator and Modulus are not set then the slave will reply FAIL.

Packet examples

An example of Host intermediate key of 7554354432121 = 6DEE29CC879 hex

Host transmit: 7F 80 09 4C 79 C8 9C E2 DE 06 00 00 9D 52

Slave Reply: 7F 80 01 FO 23 80

<< back to index

Command Code hex Code decimal
Coin Mech Options Ox5A 90
Implemented on Encryption Required
A
SMART HOPPER, SMART SYSTEM “yes
Description

The host can set the following options for the Smart Hopper. These options do not persist in
memory and after a reset they will go to their default values.

Bit function

0 Coin Mech error events 1 = ccTalk format, 0 = Coin mech jam and Coin return mech open
only

1:7 Unused set to 0

If coin mech error events are set to ccTalk format, then event Coin Mech Error 0xB7 is given
with 1 byte ccTalk

coin mech error reason directly from coin mech ccTalk event queue. Otherwise only error
events Coin Mech

Jam 0xC4 and Coin Mech Return 0xC5 are given.

Packet examples

In this example we send register byte configured to return cctalk style events.

Host transmit: 7F 80 02 5A 01 30 DC
Slave Reply: 7F 80 01 FO 23 80

<< back to index

Command Code hex Code decimal
Get Build Revision Ox4F 79
Implemented on Encryption Required
SMART HOPPER, SMART SYSTEM optional
Description

A command to return the build revision information of a device. The command returns 3
bytes of information representing the build of the product.

Byte 0 is the product type, next two bytes make up the revision number(0-65536).

For NV200 and Nv9usb, the type byte is 0, for Note Float, byte is 3 and for SMART Payout

the byte is 6.

Packet examples

This example is from an NV200 (issue 20) with payout attached (issue 21).

Host transmit: 7F 80 01 4F A2 03

Slave Reply: 7F 80 07 FO 00 14 00 06 15 00 OF 97

<< back to index

Command Code hex Code decimal
Comms Pass Through 0x37 55
Implemented on Encryption Required
SMART HOPPER, SMART SYSTEM optional
Description

The SMART Hopper includes two serial connections and this command enables the user to
convert either of these into a USB to serial convertor so that the host can communicate
directly with periferla connected to these ports.

This may be usful for updating or special configurations outside of the scope of the usual
SMART Hopper to periferal protocols.

Command data format:

byte function size

0 UART select (0 - SSP Uart, 1 - cctalk UART) 1

Once this command is sent the device will respond with OK (0xF0) and from then all serial
data via the USB will be routed to the periferal port directly.

To exit this mode, the host waits for at least 500ms since the last communication then
sends byte array 0x55,0xAA,0xAA,0x55 waits for 500ms and then sends the array again.
The device will then reset and communications will restore to normal.

Packet examples

Command format (no parameters) for acknowledged request.

Host transmit: 7F 80 01 37 B2 02
Slave Reply: 7F 80 01 FO 23 80

<< back to index

Command Code hex Code decimal
Set Baud Rate 0x4D 77
Implemented on Encryption Required
SMART HOPPER, SMART SYSTEM optional
Description

This command has two data bytes to allow communication speed to be set on a device.

byte function size

0 Required rate (0= 9600, 1=38400, 2= 15200) 1

Change persist (1=change will remain over reset, O=rate sets to default
after reset)

The device will respond with 0xFO at the old baud rate before changing. Please allow a
minimum of 100 millseconds before attempting to communicate at the new baud rate.

Packet examples

In this example, we want to set the speed to 38400 bd with but to reset to default (9600) on
reset.

Host transmit: 7F 80 03 4D 01 00 E4 27
Slave Reply: 7F 80 01 FO 23 80

<< back to index

Command Code hex Code decimal
Ssp Set Encryption Key 0x60 96
Implemented on Encryption Required
A
SMART HOPPER, SMART SYSTEM = yes
Description

A command to allow the host to change the fixed part of the eSSP key. The eight data bytes
are a 64 bit number representing the fixed part of the key. This command must be
encrypted.

byte function size

0 new fixed key 64 bit, 8 byte 8

Packet examples

Example to set new fixed key to 0x0123456701234567

Host transmit: 7F 80 09 60 67 45 23 01 67 45 23 01 BF 6F
Slave Reply: 7F 80 01 FO 23 80

<< back to index

Command

Code hex Code decimal

Ssp Encryption Reset To Default

0x61 97

Implemented on

Encryption Required

SMART HOPPER, SMART SYSTEM

optional

Description

Resets the fixed encryption key to the device default. The device may have extra security
requirements before it will accept this command (e.g. The Hopper must be empty) if these

requirements are not met, the device will reply with Command Cannot be Processed. If

successful, the device will reply OK, then reset. When it starts up the fixed key will be the

default.

Packet examples

Command format (no parameters) for acknowledged request.

Host transmit: 7F 80 01 61 46 03
Slave Reply: 7F 80 01 FO 23 80

<< back to index

Command Code hex Code decimal
Get Real Time Clock Configuration 0x62 98
Implemented on Encryption Required
SMART SYSTEM optional
Description

Returns the configuration of the device Real Time Clock.

Response

The device responds with 1 data byte giving the configuration of the RTC. Data = 0, the RTC
resets on power up and the date/time will need to be setup. Data = 1, the date/time is
persistant after a power cycle.

Packet examples

In this example the device responds that the RTC does not hold it\'s settings after a power
cycle.

Host transmit: 7F 80 01 62 4C 03
Slave Reply: 7F 80 02 FO 00 3F AO

<< back to index

Command

Code hex

Code decimal

Set Real Time Clock

0x64

100

Implemented on

Encryption Required

SMART SYSTEM

optional

Description

Send six bytes of parameter data to set the system time and date.

Command data format:

byte function size
0 Generic OK 1
1 Day of month (1-31) 1
2 Month of year (1-12) 1
3 Year (0-99) 1
4 Hour of day (0-23) 1
5 Minute of hour (0-59) 1
6 Second of minute (0-59) 1

Packet examples

Packet example for setting system time to 21st December 2012 10:22:30

Host transmit: 7F 80 07 64 15 O0C OC OA 16 1E AF EC

Slave Reply: 7F 80 01 FO 23 80

<< back to index

Command

Code hex

Code decimal

Get Real Time Clock

0x63

99

Implemented on

Encryption Required

SMART SYSTEM

optional

Description

Gets the current system RTC date and time. Responds with 6 bytes of data.

Response format:

byte function size
0 Generic OK 1
1 Day of month (1-31) 1
2 Month of year (1-12) 1
3 Year (0-99) 1
4 Hour of day (0-23) 1
5 Minute of hour (0-59) 1
6 Second of minute (0-59) 1

Packet examples

In this example the system time is 21st December 2012 10:22:30

Host transmit: 7F 80 01 63 49 83

Slave Reply: 7F 80 07 FO 15 OC 0C OA 16 1E EC F1

<< back to index

Command Code hex Code decimal
Set Cashbox Payout Limit Ox4E 78
Implemented on Encryption Required
a
SMART HOPPER, SMART SYSTEM yes
Description

Allow the host to specify a maximum level of coins, by denomination, to be left in the
hopper.

During any payout operation, if there are coins in the hopper in excess of the set levels,
when they are encountered on the conveyor belt they will be sent to the cashbox (beneath
the hopper).

This means that over time (and multiple payout operations) any excess coins will be sent to
the cashbox and the desired level will be achieved.

It effectively allows the hopper to do the 'floating' for the host machine i.e. it is an auto float
mechanism.

NB: If a coin route is changed from cashbox to payout and then back to cashbox then the
level for this coin will be reset to 0 (any of the coins will then be sent to cashbox).

Command format.

byte function size
0 The number of individual requests 1
1 The level limit to set 2
3 The denomination value 4
7 The denomination country code (3 byte ASCII) 3
Repeat above block for each denomination required

Packet examples

<< back to index

Command Code hex Code decimal
Coin Stir 0x5D 93
Implemented on Encryption Required
a
SMART SYSTEM yes
Description

Mixes the coins by performs a rotation of the Coin Hopper Motor for a specifed time.

Command has 1 parameter, a byte value (1-255) giving the time in seconds for which to stir
the coins.

Packet examples

Stir the coins for 5 seconds

Host transmit: 7F 80 02 5D 05 28 CE
Slave Reply: 7F 80 01 FO 23 80

<< back to index

Command Code hex Code decimal
Payout Amount By Denomination 0x39 57
Implemented on Encryption Required
a
SMART SYSTEM yes
Description

This command is similar to 'Payout Amount' but has two values in the payout which you can
select the denominations for each.

Packet examples

<< back to index

Event Code hex Code decimal

Slave Reset OxF1 241

Implemented on

SMART HOPPER, SMART SYSTEM

Description

An event gven when the device has been powered up or power cycled and has run through
its reset process.

~ N
[Protocol minimum version 4]
Type Data size (bytes) Repeat Poll with Ack
Status 0 no no
- J
Packet examples

Poll returns slave reset event

Host transmit: 7F 80 01 07 12 02
Slave Reply: 7F 80 01 F1 26 00

<< back to index

Event Code hex Code decimal

Disabled OxE8 232

Implemented on

SMART HOPPER, SMART SYSTEM

Description

A disabled event is given in response to a poll command when a device has been disabled
by the host or by some other internal function of the device.

~
[Protocol minimum version 4]
Type Data size (bytes) Repeat Poll with Ack
Status 0 no no
_
Packet examples

Response to poll showing disabled event

Host transmit: 7F 80 01 07 12 02
Slave Reply: 7F 80 02 FO E8 4F A2

<< back to index

Event Code hex Code decimal

Fraud Attempt OxE6 230

Implemented on

SMART HOPPER, SMART SYSTEM

Description

The validator system has detected an attempt to mauipulate the coin/banknote in order to
fool the system to register credits with no monies added.

4 N
(Protocol minimum version 4]
Type Data size (bytes) Repeat Poll with Ack
Fraud 1 no yes

Additional infomation

The data byte indicates the dataset channel of the banknote that is being tampeted with. A zero
indicates that the channle is unknown.
S J

Packet examples

Poll response showing fraud attempt seen on channel 2

Host transmit: 7F 80 01 07 12 02
Slave Reply: 7F 80 03 FO E6 02 CO 7C

<< back to index

Event Code hex Code decimal

Initialising 0xB6 182

Implemented on

SMART HOPPER, SMART SYSTEM

Description

This event is given only when using the Poll with ACK command. It is given when the BNV is
powered up and setting its sensors and mechanisms to be ready for Note acceptance. When
the event response does not contain this event, the BNV is ready to be enabled and used.

4 I
(Protocol minimum version 7]
Type Data size (bytes) Repeat Poll with Ack
Status 0 yes yes
Additional infomation
This event is only given when using the Poll With Ack command.

- J

Packet examples

Host transmit: 7F 80 01 07 12 02
Slave Reply: 7F 80 02 FO B6 88 23

<< back to index

Event Code hex Code decimal

Dispensing OxDA 218

Implemented on

SMART HOPPER, SMART SYSTEM

Description

The device is in the process of paying out a requested value. The value paid at the poll is
given in the event data.

-~
[Protocol minimum version 4]
Type Data size (bytes) Repeat Poll with Ack
Status 4 yes no

Additional infomation

$ byte data giving the amount dispensed up to the poll.

N\
4
[Protocol minimum version 6]
Type Data size (bytes) Repeat Poll with Ack
Status variable yes no

Additional infomation

An array of data giving the dispensed at the poll point for each of the countries supported in the
dataset. The first byte gives the number of countries in the set the a block of data for each of the

countries.
byte function size
0 number of countries in set 1
1 value dispensed up to this point 4
5 country code 3
repeat above block for each country in set
S

Packet examples

Protocol version 5 poll response showing 12.50 dispensed at this point

Host transmit: 7F 80 01 07 12 02
Slave Reply: 7F 80 05 FO E2 04 00 00 F8 4A

Protocol version 6 poll response showing 23.00 EUR and 12.00 GBP dispensed to this point

Host transmit: 7F 80 01 07 12 02
Slave Reply: 7F 80 10 FO 02 FC 08 00 00 45 55 52 BO 04 00 00 47 42 50 04 B3
ascii: : 5 . . : . E U R . . 5 . G B P

<< back to index

Event Code hex Code decimal

Dispensed 0xD2 210

Implemented on

SMART SYSTEM

Description

Show the total value the device has dispensed in repsonse to a_Dispense command.

4 N
[Protocol minimum version 4]
Type Data size (bytes) Repeat Poll with Ack
Status 4 no yes

Additional infomation

4 byte value showing total value dispensed.

S
S~
[Protocol minimum version 6]
Type Data size (bytes) Repeat Poll with Ack
Status variable no yes

Additional infomation

An array of data giving the total dispensed for each of the countries supported in the dataset. The first
byte gives the number of countries in the set the a block of data for each of the countries.

byte function size
0 number of countries in set 1
1 value dispensed 4
5 country code 3
repeat above block for each country in set

Packet examples

<< back to index

Event

Code hex

Code decimal

Coins Low

0xD3

211

Implemented on

SMART HOPPER

Description

Packet examples

<< back to index

Event Code hex Code decimal

Hopper Jammed 0xD5 213

Implemented on

SMART HOPPER, SMART SYSTEM

Description

An event showing the hopper unit has jammed and giving the value paid/floated upto that
jam.

On the smart payout this event is used when a jam occurs during a payout / float / empty
operation.

4 I
[Protocol minimum version 5]
Type Data size (bytes) Repeat Poll with Ack
Error 4 yes no

Additional infomation

4 bytes showing the value dispensed up to the jam point

S J
4 N\
(Protocol minimum version 6]
Type Data size (bytes) Repeat Poll with Ack
Error variable yes no

Additional infomation

An array of data giving the dispensed/floated at the jammed point for each of the countries supported
in the dataset. The first byte gives the number of countries in the set the a block of data for each of
the countries.

byte function size
0 number of countries in set 1
1 value dispensed/floated up to this point 4
5 country code 3
repeat above block for each country in set

Packet examples

Protocol version 5 poll response showing 2.30 paid up to the jam point

Host transmit: 7F 80 01 07 12 02
Slave Reply: 7F 80 06 FO D5 E6 00 00 00 49 DB

<< back to index

Event Code hex Code decimal

Halted 0xD6 214

Implemented on

SMART HOPPER, SMART SYSTEM

Description

Triggered when payout is interrupted for some reason.

Protocol Version 6 and earlier

This event is given when:
o the host has requested a halt to the device.

o the payout is automatically cancelled (due to a jam/reverse validation fail/cashbox
error etc.)

The value paid at the point of halting is given in the event data.

Protocol Version 7 and later

This event is given when:
o the host has requested a halt to the device.
The value paid at the point of halting is given in the event data.

Note: a different event 'Error During Payout' is generated when errors occur

~
(Protocol minimum version 4 j
Type Data size (bytes) Repeat Poll with Ack
Status 4 no no

Additional infomation

4 byte showing the value paid up to the halt point

&
~
(Protocol minimum version 6]
Type Data size (bytes) Repeat Poll with Ack
Status variable no no

Additional infomation

An array of data giving the dispensed/floated at the poll point for each of the countries supported in
the dataset. The first byte gives the number of countries in the set the a block of data for each of the
countries.

byte

function

size
0 number of countries in set 1
1 value dispensed/floated up to this point 4
5 country code 3

repeat above block for each country in set

Packet examples

Protocol version 6 poll response showing 15.30 GBP to the halt point

Host transmit:
Slave Reply:
ascii:

7F 80 01 07 12 02
7F 80 OA FO D6 01 FA 05 00 00 45 55 52 4D 49
E U R

<< back to index

Event Code hex Code decimal

Floating 0xD7 215

Implemented on

SMART HOPPER, SMART SYSTEM

Description

Event showing the amount of cash floated up to the poll point

-
[Protocol minimum version 4]
Type Data size (bytes) Repeat Poll with Ack
Status 4 yes no

Additional infomation

4 bytes showing the value floated to the cashbox up to the poll

N\
s
(Protocol minimum version 6 j
Type Data size (bytes) Repeat Poll with Ack
Status variable yes no

Additional infomation

An array of data giving the floated value at the poll point for each of the countries supported in the
dataset. The first byte gives the number of countries in the set the a block of data for each of the
countries.

byte function size
0 number of countries in set 1
1 value floated to this point 4
5 country code 3
repeat above block for each country in set

Packet examples

Protocol version 5 poll response showing 45.00 floated

Host transmit: 7F 80 01 07 12 02
Slave Reply: 7F 80 05 FO 94 11 00 00 E8 F3

<< back to index

Event Code hex Code decimal

Floated 0xD8 216

Implemented on

SMART HOPPER, SMART SYSTEM

Description

Event given at the end of the floating process which will display the amount actually floated.

4 I
(Protocol minimum version 4 J
Type Data size (bytes) Repeat Poll with Ack
Status 4 no yes

Additional infomation

4 Bytes showing the amount floated

S J
4 N
(Protocol minimum version 6]
Type Data size (bytes) Repeat Poll with Ack
Status variable no yes

Additional infomation

An array of data giving the floated value at the end of the process for each of the countries supported
in the dataset. The first byte gives the number of countries in the set the a block of data for each of
the countries.

byte function size
0 number of countries in set 1
1 value floated 4
5 country code 3
repeat above block for each country in set

Packet examples

Protocol version 6 poll response showing a floated value of 20.50 EUR

Host transmit: 7F 80 01 07 12 02
Slave Reply: 7F 80 OA FO D8 01 02 08 00 00 45 55 52 81 CO
ascii: 5 5 . 5 5 5 . E U R

<< back to index

Event

Code hex

Code decimal

Timeout

0xD9

217

Implemented on

SMART HOPPER, SMART SYSTEM

Description

The device has been unable to complete a request. The value paid up until the time-out
point is given in the event data.

4 N\
[Protocol minimum version 4]
Type Data size (bytes) Repeat Poll with Ack
Status 4 no yes
Additional infomation
4 bytes showing the value dispensed or floated to that point.
. /)
e N
(Protocol minimum version 6 j
Type Data size (bytes) Repeat Poll with Ack
Status variable no yes
Additional infomation
An array of data giving the dispensed/floated at the poll point for each of the countries supported in
the dataset. The first byte gives the number of countries in the set the a block of data for each of the
countries.
byte function size
0 number of countries in set 1
1 value dispensed/floated up to this point 4
5 country code 3
repeat above block for each country in set
(N J

Packet examples

<< back to index

Event

Code hex

Code decimal

Incomplete Payout

0xDC

220

Implemented on

SMART HOPPER, SMART SYSTEM

Description

The device has detected a discrepancy on power-up that the last payout request was

interrupted (possibly due to a power failure). The amounts of the value paid and requested

are given in the event data.

-
[Protocol minimum version 4 j
Type Data size (bytes) Repeat Poll with Ack
Pay-out 8 no yes
Additional infomation
Eight data bytes showing the value dispensed and the value requested.
G
-
[Protocol minimum version 6)
Type Data size (bytes) Repeat Poll with Ack
Pay-out variable no yes

Additional infomation

An array of data giving the value dispensed and the original value requested before the power down
for each of the countries supported in the dataset. The first byte gives the number of countries in the
set then a block of data for each of the countries (see table below).

byte function size
0 number of countries in set 1
1 value dispensed 4
5 value requested 4
9 country code (ASCII) 3
repeat above block for each country in set

Packet examples

Protocol version 5 poll response showing 25.20 paid out of request for 50.00

Host transmit: 7F 80 01 07 12 02
Slave Reply: 7F 80 09 FO D8 09 00 00 58 OD 00 00 3B C9

Protocol version 6 poll response showing 23.00 EUR paid out of a request to payout 50.00 EUR

Host transmit: 7F 80 01 07 12 02
Slave Reply: 7F 80 OD FO 01 FC 08 00 00 88 13 00 00 45 55 52 C3 E5
ascii: E 5 E 5 E 5 E 5 E . E U R

<< back to index

Event

Code hex

Code decimal

0xDD

221

Incomplete Float

Implemented on

SMART HOPPER, SMART SYSTEM

Description

The device has detected a discrepancy on power-up that the last float request was
interrupted (possibly due to a power failure). The amounts of the value paid and requested
are given in the event data.

4 I
[Protocol minimum version 5]
Type Data size (bytes) Repeat Poll with Ack
Pay-out 8 no yes

Additional infomation

8 data bytes giving the value of floated and the float value requested before the power was

interrupted
N\ J
4 N
(Protocol minimum version 6]
Type Data size (bytes) Repeat Poll with Ack
Pay-out variable no yes

Additional infomation

An array of data giving the value floated and the original value requested before the power down for
each of the countries supported in the dataset. The first byte gives the nhumber of countries in the set
then a block of data for each of the countries (see table below).

byte function size
0 number of countries in set 1
1 value floated 4
5 value requested 4
9 country code (ASCII) 3
repeat above block for each country in set
& J

Packet examples

<< back to index

Event

Code hex

Code decimal

Cashbox Paid

OxDE

222

Implemented on

SMART HOPPER, SMART SYSTEM

Description

Coin values have been detected and paid to the cashbox since the last poll.

-
(Protocol minimum version 5 j
Type Data size (bytes) Repeat Poll with Ack
Status 4 no no
Additional infomation
Data bytes show the coin value paid
(N
-~
(Protocol minimum version 6]
Type Data size (bytes) Repeat Poll with Ack
Status variable no no

Additional infomation

Data bytes give country codes and values for each of the currencies in the dataset:

byte function size
0 number of countries in set 1
1 value dispensed 4
5 country code 3

repeat above block for each country in set

Packet examples

Protocol version 5 poll response showing 2.00 (200 c) coin paid to cashbox

Host transmit: 7F 90 01 07 51 83
Slave Reply: 7F 90 06 FO DE C8 00 00 00 68 00

Protocol version 6 poll response showing 5.30 GBP adn 0.20 EUR paid to cashbox

Host transmit: 7F 90 01 07 51 83

Slave Reply: 7F 90 11 FO DE 02 12 02 00 00 47 42 50 14 00 00 00 45 55 52 3A 50
G B P

ascii:

E U R

<< back to index

Event

Code hex

Code decimal

Coin Credit

OxDF

223

Implemented on

SMART HOPPER

Description

A coin has been detected as added to the system. This would be usually via the

coin mech attached to the system port.

seperate

s
[Protocol minimum version 5)
Type Data size (bytes) Repeat Poll with Ack
Status 4 no no
Additional infomation
Data gives 4 byte value of the coin added
.
4
(Protocol minimum version 6]
Type Data size (bytes) Repeat Poll with Ack
Status 7 no no

Additional infomation

.

Data bytes give 4 byte coin value and 3 byte ASCII country code of the coin added

Packet examples

Protocol version 5 poll response showing 1.00 (100 c) coin added

Host transmit:
Slave Reply:

7F 90 01 07 51 83

7F 90 05 FO 64 00 00 00 97 A3

Protocol version 6 poll response showing 5.00 GBP coin added

Host transmit:
Slave Reply:
ascii:

7F 90 01 07 51 83

7F 90 09 FO DF F4 01 00 00 47 42 50 89 OF

G B P

<< back to index

Event Code hex Code decimal
Coin Mech Jammed 0xC4 196
Implemented on
SMART HOPPER, SMART SYSTEM
Description
The attached coin mechanism has been detected as having a jam.
~
[Protocol minimum version 5]
Type Data size (bytes) Repeat Poll with Ack
Status 0 no no
\§
Packet examples

Poll response showing coin mech jam

Host transmit: 7F 90 01 07 51 83
Slave Reply: 7F 90 02 FO C4 A2 62

<< back to index

Event Code hex Code decimal

Coin Mech Return Active 0xC5 197

Implemented on

SMART HOPPER, SMART SYSTEM

Description

The attached coin mechanism has been detected as having it's reject or return button

pressed.
e
(Protocol minimum version 5 j
Type Data size (bytes) Repeat Poll with Ack
Status 0 no no
NS
Packet examples

<< back to index

Event Code hex Code decimal

Emptying 0xC2 194

Implemented on

SMART HOPPER, SMART SYSTEM

Description

The device is currently performing is empty operation following an Empty command request.

4 N\
(Protocol minimum version 5]
Type Data size (bytes) Repeat Poll with Ack
Status 1) yes no
. J
Packet examples

Poll response showing device emptying

Host transmit: 7F 80 01 07 12 02
Slave Reply: 7F 80 02 FO C2 BO 22

<< back to index

Event

Code hex

Code decimal

Emptied

0xC3

195

Implemented on

SMART HOPPER, SMART SYSTEM

Description

The device has completed it's empty operation in response to the Empty command.

Vs
[Protocol minimum version 5]
Type Data size (bytes) Repeat Poll with Ack
Status 0 no no
N\
Packet examples

Poll response showing device emptied

Host transmit: 7F 80 01 07 12 02
Slave Reply: 7F 80 02 FO C3 B5 A2

<< back to index

Event Code hex Code decimal

Smart Emptying 0xB3 179

Implemented on

SMART HOPPER, SMART SYSTEM

Description

The device is in the process of carrying out its Smart Empty command from the host. The
value emptied at the poll point is given in the event data

s
[Protocol minimum version 5)
Type Data size (bytes) Repeat Poll with Ack
Status 4 yes no
Additional infomation
4 byte integer showing the value emptied so far.
NG J
4 N
(Protocol minimum version 6]
Type Data size (bytes) Repeat Poll with Ack
Status variable yes no

Additional infomation

Data bytes give country codes and values for each of the currencies in the dataset:
byte function size

0 number of countries in set 1

1 value dispensed 4

5 country code 3

repeat above block for each country in set
S J
Packet examples

A device has emptied 22.60 EUR up to this poll with protocol version 5

Host transmit: 7F 80 01 07 12 02
Slave Reply: 7F 80 07 FO B3 01 D4 08 00 00 53 F7

A device has emptied 22.60 EUR up to this poll with protocol version 6

Host transmit: 7F 80 01 07 12 02
Slave Reply: 7F 80 OA FO B3 01 D4 08 00 00 45 55 52 44 F6
ascii: «+ « « « « « » E U R

<< back to index

Event

Code hex

Code decimal

Smart Emptied

0xB4

180

Implemented on

SMART HOPPER, SMART SYSTEM

Description

The device has completed its Smart Empty command. The total amount emptied is given in

the event data.

s
[Protocol minimum version 5]
Type Data size (bytes) Repeat Poll with Ack
Status 4 no yes
Additional infomation
4 byte interger showing the total value emptied in this session.
o
S~
(Protocol minimum version 6]
Type Data size (bytes) Repeat Poll with Ack
Status variable no yes

Additional infomation

Data bytes give country codes and values for each of the currencies in the dataset of the total amount

emptied.
byte function size
0 number of countries in set 1
1 value dispensed 4
5 country code 3
repeat above block for each country in set
.

Packet examples

<< back to index

Event Code hex Code decimal

Calibration Failed 0x83 131

Implemented on

SMART HOPPER, SMART SYSTEM

Description

During the devices normal re-calibration process, an error has been detected which
indicates a sensor failure or out-of-range issue. This usually indicate a hardware failure and
the device should be taken out of service until the cause is found.

4 A
[Protocol minimum version 7]
Type Data size (bytes) Repeat Poll with Ack
Error 1 no no

Additional infomation

A data byte error reason is given detailed in the table below.

Error Code
0
Payout flap sensor 1
Exit sensor 2
Coil 1 sensor 3
Coil 2 sensor 4
Unit not initialised 5
Checksum error 6
Recalibration by command required (obsolete) 7
Motor opto slot error 8,9
Exit sensor error 2 10
. J

Packet examples

The example below shows a calibration fail due to an issue with coil 1.

Host transmit: 7F 80 01 07 12 02
Slave Reply: 7F 80 03 FO 83 03 CO 22

<< back to index

Event

Code hex

Code decimal

Device Full

OxCF

207

Implemented on

SMART SYSTEM

Description

The device has detected that it is full of coins/banknotes and no more can be added.

e

(

Protocol minimum version 5

Type

Data size (bytes)

Repeat

Poll with Ack

Status

0

yes

no

Packet examples

<< back to index

Event Code hex Code decimal

Coin Mech Error 0xB7 183

Implemented on

SMART HOPPER, SMART SYSTEM

Description

This event will only be gererated if the Coin Mech Options command has been sent
to the device with data bit set to enable error events.

The data byte given with this event indicates the error type.

Code

Error

Description

1

Reject coin

A coin was inserted which did not match any of the programmed types. The coin is returned
to the customer and no credit is given.

2

Inhibited coin

A coin was inserted which did match a programmed window type but was prevented from
accepting by the inhibit register. The inhibit register can be controlled serially but may also
be linked to external DIL switches.

3

Multiple window

A coin was inserted which matched more than one enabled window type. This coin was
rejected as the credit code was indeterminate.

4

Wake-up timeout

A coin acceptor fitted with a wake-up sensor picked up a coin entering the acceptor but it
was not seen subsequently in the validation area. Possible coin jam.

5

Validation timeout

A coin was detected entering the validation area but failed to leave it. Possible coin jam.
6

Credit sensor timeout

A coin was validated as true but never made it to the post-gate credit sensor. Possible coin
jam.

7

Sorter opto timeout

A coin was sent into the sorter / diverter but was not seen coming out. Possible coin jam.
8

2nd close coin error

A coin was inserted too close to the one in front. One or both coins will have rejected.

9

Accept gate not ready

A coin was inserted while the accept gate for the coin in front was still operating. Coins have
been inserted too quickly.

10

Credit sensor not ready

A coin was still over the credit sensor when another coin was ready to accept. Coins have
been inserted too quickly.

11

Sorter not ready

A coin was inserted while the sorter flaps for the coin in front were still operating. Coins
have been inserted too quickly.

12

Reject coin not cleared

A coin was inserted before a previously rejected coin had time to clear the coin acceptor.
Coins have been inserted too quickly.

13

Validation sensor not ready

The validator inductive sensors were not ready for coin validation. Possible fault developing.
14

Credit sensor blocked

There is a permanent blockage at the credit sensor. The coin acceptor will not accept any
more coins.

15

Sorter opto blocked

There is a permanent blockage at the sorter exit sensor. The coin acceptor will not accept
any more coins.

16

Credit sequence error

A coin or object was detected going backwards through a directional credit sensor. Possible
fraud attempt.

17

Coin going backwards

A coin was detected going backwards through the coin acceptor. Possible fraud attempt.
18

Coin too fast (over credit sensor)

A coin was timed going through the credit sensor and was too fast. Possible fraud attempt.
19

Coin too slow (over credit sensor)

20

C.0.S. mechanism activated

(coin-on-string)

A specific sensor for detecting a ‘coin on string’ was activated. Possible fraud attempt.

21

DCE opto timeout

A coin acceptor fitted with a Dual Coin Entry chute saw a coin or token which was not seen
subsequently in the validation area. Possible coin jam.

22

DCE opto not seen

A coin acceptor fitted with a Dual Coin Entry chute saw a coin which was not seen previously
by the chute sensor. Possible fraud attempt.

23

Credit sensor reached too early

A coin was timed from the end of the validation area to the post-gate credit sensor. It
arrived too early. Possible fraud attempt.

24

Reject coin (repeated sequential trip)

A coin was rejected N times in succession with no intervening true coins. Statistically
unlikely if N greater than or equal to 5. Possible fraud attempt.

25

Reject slug

A coin was rejected but was identified as a known slug type - this may be a pre-
programmed fraud coin or a known fraud material.

26

Reject sensor blocked

There is a permanent blockage at the reject sensor. The coin acceptor will not accept any
more coins. Not all coin acceptors have a reject sensor.

27

Games overload

Totaliser mode : A game value was set too low - possibly zero. This is a product
configuration error.

28

Max. coin meter pulses exceeded

Totaliser mode : A meter value was set too low - possibly zero. This is a product

configuration error.

29

Accept gate open not closed

The accept gate was forced open when it should have been closed.

30

Accept gate closed not open

The accept gate did not open when the solenoid was driven.

31

Manifold opto timeout

A coin was sent into the manifold module (coin diverter) but was not seen coming out.
Possible coin jam.

32

Manifold opto blocked

There is a permanent blockage at the manifold module sensor (coin diverter). The coin
acceptor will not accept any more coins.

128

Inhibited coin (Type 1)

A true coin (type 1, coin in position 1) was inserted but was prevented from accepting by
the inhibit register.

Inhibited coin (Type n)

A true coin (type n, coin in position n) was inserted but was prevented from accepting by
the inhibit register.

159

Inhibited coin (Type 32)

A true coin (type 32, coin in position 32) was inserted but was prevented from accepting
by the inhibit register.

253

Data block request (note a)

A '‘not yet used’ mechanism for a coin acceptor to request attention from the host machine.
Perhaps it needs some data from the host machine or another peripheral.

254

Coin return mechanism activated

(Flight deck open)

An attempt to clear a coin jam by opening the flight deck was detected. The coin acceptor
cannot operate until the flight deck is closed.

255

Unspecified alarm code

Any alarm code which does not fit into the above categories.

4 N\
(Protocol minimum version 7]
Type Data size (bytes) Repeat Poll with Ack
Error 1 no no
g J
Packet examples

A coin error: too slow detected

Host transmit: 7F 80 01 07 12 02
Slave Reply: 7F 80 03 FO B7 14 B1 1A

<< back to index

Event

Code hex

Code decimal

Attached Coin Mech Disabled

0xBD

189

Implemented on

SMART HOPPER, SMART SYSTEM

Description

The device seperate coin mechanism attached to this device has been disabled.

Protocol minimum version 6

Type

Data size (bytes)

Repeat

Poll with Ack

Status 0

no

no

Packet examples

Poll response showing coin mech disabled

Host transmit: 7F 90 01 07 51 83
Slave Reply: 7F 90 02 FO BD B7 E3

<< back to index

Event

Code hex Code decimal

Attached Coin Mech Enabled

190

Implemented on

SMART HOPPER, SMART SYSTEM

Description
The seperate coin mechanism attached to this device has been enabled.
-
(Protocol minimum version 6]
Type Data size (bytes) Repeat Poll with Ack
Status 0 no no
G
Packet examples

Poll response showing coin mech enabled

Host transmit: 7F 90 01 07 51 83
Slave Reply: 7F 90 02 FO BE BD E3

<< back to index

Event Code hex Code decimal

Value Added OxBF 191

Implemented on

SMART SYSTEM

Description

An event giving the cumulative value of currency detected as added to the system since the

last poll.
4 N
(Protocol minimum version 7]
Type Data size (bytes) Repeat Poll with Ack
Pay-in variable no yes

Additional infomation

Data bytes give country codes and values for each of the currencies where value has been added

byte function size
0 Generic OK 1
1 Event code 1
2 number of countries in data 1
3 value added (4 byte integer) 4
7 country code (3 Byte ASCII) 3
repeat above block for each country data

Packet examples

5.50 EUR has been added since the last poll

Host transmit: 7F 80 01 07 12 02
Slave Reply: 7F 80 OA FO BF 01 26 02 00 00 45 55 52 ED 91

2.20 EUR and 3.60 GBP have been added since the last poll

Host transmit: 7F 80 01 07 12 02
Slave Reply: 7F 80 11 FO BF 02 DC 00 00 00 45 55 52 68 01 00 00 47 42 50 D1 05

<< back to index

Event Code hex Code decimal
Pay-in Active 0xC1 193
Implemented on
SMART SYSTEM
Description
The pay-in function of the system is active.
S
(Protocol minimum version 7]
Type Data size (bytes) Repeat Poll with Ack
Status 0 yes no
S
Packet examples

Poll response showing pay-in function is active

Host transmit: 7F 90 01 07 51 83
Slave Reply: 7F 90 02 FO C1 BC 62

